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For the p-norm condition number #«; , of the B-spline basis of order k we prove
the upper estimate x , < k2k. This proves de Boor’s 2¥-conjecture up to a polyno-
mial factor.  © 1999 Academic Press

1. INTRODUCTION

It is of central importance for working with B-spline series that its condi-
tion number is bounded independently of the underlying knot sequence.
This fact was proved by C. de Boor in 1968 for the sup-norm and in 1973
for any L,-norm (see [ B1] for references). In the paper [B2] he gave the
direct estimate

Ky p < k9 (1.1)

for xy ,, the worst condition number with respect to the p-norm of a
B-spline basis of order k, and conjectured that the real value of x; , grows
like 2%,

Kr p~ 25, (1.2)

which is seen to be far better than (1.1).
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The conjecture was based on numerical calculations of some related con-
stants which moreover gave some evidence that the extreme case occurs for
a knot sequence without interior knots (the so-called Bernstein knots).
Maybe due to this reason, a few papers devoted to the 2*-conjecture for
Ky, , were concerned only with the “Bernstein knots” conjecture for the
extreme knot sequence, see [ B3, C, Ly, S].

These papers gave further support for de Boor’s conjecture (1.2), in
particular T. Lyche [Ly] obtained a lower bound for x, ., from which it
follows [S] that

Kp, p > ck P2k, (1.3)

In the unpublished manuscript [SS1] we returned to de Boor’s direct
approach in [B2], and considered the possibility of improving his
9%-estimate by several modifications of his method. In particular, a slight
revision based on Kolmogorov’s estimate for intermediate derivatives had
shown that

Ki p< ky*, y=06.25.
In the previous paper [ SS2] we developed a further approach to obtain
Ky, p <k'?4.

In this paper using the same approach we give a surprisingly short and
elementary proof of

THEOREM 1. For all k and all pe[1, 0],
K, p <hk2X. (14)

With respect to (1.2)—(1.3), this confirms C. de Boor’s conjecture up to
a polynomial factor.

We show also that the optimal factor which can be obtained in (1.4)
within this approach is k2 and discuss further possible approaches by
which this factor could be removed.

2. CONDITION NUMBER AND RELATED CONSTANTS

Let {]\7]} be the B-spline basis of order & on a knot sequence = (t;),
t;<t;,r, normalized with respect to the L,-norm (1< p< ), ie,

NJ(X) = (k/(lj+k_ lj))l/P Nj(x)a
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where {N,} is the B-spline basis which forms a partition of unity. Recall
here that

N = ([t s 1] = [lprs o G D= 157!

and that

N;(x)>0, xe(t;, 1) Ni(x)=0, x¢[t;,t; ] Y N,=1.

The condition number of the L,-normalized basis {N,} is defined as

1514, I\ijN,»HLp
sup ~ sup
b IZbN; L, b 151,
161,
sup ———,
b szijHLp

Kip,t+=

where the L,-norm is taken with respect to the smallest interval containing
the knot sequence (z;).
The last equality in the above definition follows from normalization

- k
N,(x)=M }’"(x) N }/(x), M;(x):= N,(x), JMj(x) dx=1,
J J lj+k_ t]
so that
. . . 1/p 1/q
) bN;| = HZ bij/pNj/q < ”<Z bijj> <Z Nj>
LP LP LP
1/p 1/p
)], - o)
L, L,

<Ibl,.

with equalities for b; = ((t;, . —1,)/k)"”.
The worst B-spline condition number is defined then as

Ki p:=SUP Kg p ;-
t

Its value gives a measure for the uniform stability of the B-spline basis and
is important for numerical calculations with B-splines.
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Following [B2] we introduce now related constants that are upper
bouds for x; ,. This has been done already in [ SS2] but for convenience
of the reader we state here again the relevant lemmas. More details can be
found in [BI1, B2, S].

Lemma A.  Let H; be the class of functions he L, such that

(1) supphc[t;,t; 4]

(2) [nN;=s,

and let

Dk’p::Sup sup lnf {(ti+k_ti)1/p Hth}a
t i heH,;

where 1/p+1/q=1. Then

Now set

Then an easy way for obtaining he H, is to set h=(gy,)® for some
appropriate smooth function g. We formulate this as

LEMMA B. Let G; be the class of functions g such that

(1) gy;e W];[tia livids

0, k-fold at t;,
v k-fold at ;. y,

) o=
and let G® :={(gy;)*: g€ G,}. Then
GPcH,.

Combining Lemmas A and B gives

COROLLARY. k. ,< B, ,:=supsup inf {(z,,,— )" |(gy)®|,}.
t i gegG;
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Finally, due to the local character of the quantity By ,, it is sufficient to
restrict attention to the meshes A of the form

A= (1o <ty < - <ty)y,  1g<Iy.
Set also
1 k—1
o(x) 1=604(X)=m il;[l (x—1;) =Wo(x), (2.1)
and

N(t)=N4(0)=([tos s g1 ] — [ 115 s tk])('_l)ﬁ71~

Lemma C. For w given via A as in (2.1), let G4 be the class of functions
g such that

(1) goeWglto, 1],

2) gw= 0, k-fold at t,,
899w, k-fold at 1,
and let
By ,:=sup inf (1, —10)"" ||(gw) @,
4 geGy
Then
Kie,p < Bie,p < B, 1- (2.2)

Remark. Lemma A is taken from [ B2, p. 123] whereas Lemma B and,
respectively, C are somewhat more accurate versions of what is given in
[B2, Eq. (4.1)]. Namely, they show the possibility to choose a smoothing
function g depending on w. C. de Boor’s estimate of B, , resulting in (1.1)
was based on the inequalities

k
By, < inf sup |(g0)®].. < inf Y
geG, geG

k
< > g o sup “=™],
m

4 i=m 2]

kK lk
<3 () 18l sup o,

i=m @

with some special choice of g, € G :=() G, that is seen to be independent
of w. Notice, that in the latter sum for any choice of g, € G the term with
m=k is equal at least to 4“1 (see [ B2, p. 132]).
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3. PROOF OF THEOREM 1

The idea in the previous paper [SS2] was to choose ge G, as the
indefinite integral of the L -normalized B-spline, i.

k x
gul)i= - | Natoyd.

Then, the inclusion g, € G4 is almost evident (see [ SS2]), and thus we can
majorize the constant B, | by

B < Sy i=sup (t—to) 557 . (3.1)
a4

where

Sy =840 4.

(3.2)
Notice that supp s = [1,, ], so that actually the L -norm in (3.1) i
taken over [ 1y, #;].

In view of
k
(1= t0)s(x) =k ¥ ( >N£:"—“<x> o), (3.3)
we showed in [ SS2] that, for any 4 and m=1, ..., k,
k—1
N(mfl) (k—m) < , 34
v ro < () (34)
which, by Lemma C and (3.1)—(3.3), implies the bound
Ky, p < k24,
Here we improve (3.4) by
LemMMA 1. For any A, and m=1, ..., k
ING Do, <1 (3.5)

Now, by (3.1)—(3.5) and Lemma C,

k
Kk,pSSk,lgk Z <Z>—k(2k—1)<k2k
1

m=

which proves Theorem 1.
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Remark. 1If w has a multiple zero

viI= L = = =yt p,—1

of multiplicity p,, then N %~#Y has a jump at 7,. In this case we can define
the value NE=7+9(z ) »~1=9(7 ) as a limit either from the left or
from the right. This limit is equal to zero, if 7, € (,, t;). Also this definition
justifies the equality (3.3).

4. LEE’'S FORMULA AND A LEMMA OF INTERPOLATION

For arbitrary reZ . and teR, set

1
rl

¢r(xr t) :=}". (x_t)r+

and define Q; (x, 1) and Q;(x, ) as algebraic polynomials of degree k — 1
with respect to x that interpolate the function ¢, _ (-, ) on the meshes

O1="(tg, b1yt 1), O2= (11, s L1, tg)s

respectively.
The following nice formula is due to Lee [L].

Lemma D [L]. For any A4,
N(1) o(x) = O5,(x, 1) = Os(x, 7). (4.1)
Proof [L]. The difference on the right-hand side is an algebraic poly-

nomial of degree kK —1 with respect to x that is equal to zero at x=
ty, .., ty_1, hence

05 (%, 1) — Qi (%, 1) ﬁ —1).

Further, since the leading coefficient of the Lagrange interpolant to f on
the mesh (z;)%_, is equal to [y, .., 7;] f, we have

() =([tos ot 11 =[5 tr]) Pra(-, 1) =

and the lemma is proved.
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We will use Lee’s formula (4.1) to evaluate the product N ™~ 1(z) co* =™)(¢)
by taking the corresponding partial derivatives with respect to x and ¢ in
(4.1) and setting x =1.

Our next two lemmas give a bound for the values obtained in that way
on the right-hand side of (4.1).

For arbitrary pe N, p >r, and any sequence

define, for a fixed ¢,

0(x):=0(x, 1) := Q(x, £; $,, 9)

as the polynomial of degree p with respect to x that interpolates ¢,(-, )
at o.

LEMMA 2. For any admissible p,r, t, 0,
0< 0 (x) = <1, (42)
where the derivative is taken with respect to x.

Proof. First we prove

(A) The case r=0. Then Q,(-) is a polynomial of degree <p that
interpolates, for this fixed ¢, the function

1 xX=t
—¢ 0 = ) )
(=) {0, x <t

We have to prove that
0<0(x)| = <1 (4.3)

and distinguish the following cases:

(A1) If =1, for some i, then (4.3) is evident.

(A2) If all the points of interpolation lie either to the left or to the
right of ¢, ie., if

<, or <7y,
then

0,=0, or Q=1
respectively, and (4.3) holds.
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(A3) If ¢ lies between two points, i.e., for some v

TS - ST, <UI<T, 1K< - KTp,
then in view of Q(x)=[0Q,— ¢o(-, )] (x) for x #¢, the polynomial Q(x)
has at least v zeros on the left of 7,, and at least p — v — 1 zeros on the right
of 7,,,, which gives p—1 zeros in total. Hence Q) has no zeros in
(t,, T,41), so that Q, is monotone in (7,, 7, ), that is,

O:Qt(z—v)<Qt( ) Q( v+1)

(B) The case r>0. This case is reduced to the case r =0 by Rolle’s
theorem. The difference ¢,(-, 1) — Q, has p + 1 zeros (counting multiplicity),
thus its rth derivative ¢o(-, 1) — Q' must have at least p + 1 —r changes of
sign.

If (4.2) does not hold, then this function does not change sign at x =1,
and Q!” is a polynomials of degree p—r that interpolates ¢f-, ) at
p—r+1 points all distinct from ¢ But according to the Case (A3) this
would imply (4.2), a contradiction.

Hence, (4.2) holds, and the lemma is proved.

LemMmA 3. For any admissible p, r, t, 0,

ar—s aS

0<(—1)SF%

(X, )], < 1. (4.4)

Proof. Let I, be the fundamental Lagrange polynomials of degree p for
the mesh 6, ie., /;(t;)=0J,. Then Q,= Q(-, t), which is the Lagrange inter-
polant to ¢,(-, t), can be expressed as

1 V4
7 i; X).
Thus, we obtain

0* 1
5700 =

(=1

It is readily seen that

Qo, Ax) 1= Qolx, 1) :=(—1)" =
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is a polynomial of degree p with respect to x that interpolates

¢r—s('ﬂ t): (_l)z__s

(r—s)!

at the same mesh 6. Now (4.4) follows from Lemma 2.

5. PROOF OF LEMMA 1

We need to bound

NO() @0®=1=9() = NO(1) 0*=1=x)|,_,,  s=0,1,. k—L

Now according to Lemma D

ak—l—s as ak—l—s as

N(S)(l) CU(k—l—s)(x) =W% Q51(x’ [)_F%

and by Lemma 3 for any ¢

ak— 1—s o*

N

Qé(xa t)|x=t< 1

Q&z(xa t),

Hence, since both terms are of the same sign and of absolute value <1,

INO(2) - 0* =1 =9(1)| <1,

which proves Lemma 1.

6. ON THE FACTOR k IN THEOREM 1

Numerical computations [ B3] show that
K, p < 2K,
so a natural question is whether the factor k in the bound
Ki p< k2K

of Theorem 1 can be removed.

(6.1)
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A simple example will show now that within the particular method we

used in Section 3 (see (3.1)), an extra polynomial factor \/l; appears
unavoidably. Namely, one can prove that for some choice of 4,

S 12 (1 —1to) HS(Ak:H o = k2%,

In fact, in the case of the Bernstein knots A4, in [0, 1], i.e., for

0,(¥) = o X = 1

we have

and obtain

k k—1
Si']?(x)?k—l)!( y >

Xmil <:;> [xk*lfv(l —X)V](mfl) [xv(x_ l)kflfv](kfm).

It is not hard to see that at x =1 the mth term vanishes, unless m=v+1,
which gives

ook (k=1\ [ Kk ok
|S3v)(1)|_(k—1)!< y >'<v+1>”(k_l_v)!_k<v+1>'

With this, we take v, +1=|k/2 ] to obtain

— k 1-1/2~k
|sA*(1)|—k<Lk/2J>>ck 2k,

7. POSSIBLE REFINEMENTS

We describe here some further approaches that may permit removal of
the polynomial factor in the upper bound for the sup-norm condition
number ;.
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(1) The first approach is to majorize x; , using the intermediate
estimate (2.2) with the value B, , instead of B, ; used in Theorem 1, that
is,

Kk,oogBk,OO'

Then the desired 2*-bound without an extra factor will follow from the
following

Conjecture. For any w=w,, there exists a function g, € G, such that
sign g{™(x) = sign 0% ~")(x), xelty, ty], m=1,.,k (71)

This conjecture implies that
U3
1570 1= [ 97061 0 )
Zy

Then observe that, because of the boundary conditions satisfied by g, and
the way g, and w, are normalized,

(— 1 [ g %) dr = [ gy () 0% (x) de=1.

) Ty

Hence
m k—m — m= ] 2
”g(* )w( )” [1[10’ tk] 1, 1, ceey k, ( . )

and using this bound, one could show, exactly as in Section 3, that

k k X
Koo <Bir o< ). . =2kK—1.
m=1

Remark. (1) A function g, satisfying (7.1) should in a sense be close
to the function g, considered in Section 3 (though it is not necessarily
unique). Moreover, g4 can serve as g, for the polynomials w, with the
Bernstein knots

W4 (%) = e(x — 1) (x— 1)1,
Also, it looks quite probable that, even though the equality (7.2) is not
valid with g, = g, for arbitrary 4, there holds

k—
15 S ™ ppay <€ m=1,..k,
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that is, for the B-spline M ,4(x) = (k/(t,—t,)) N 4(x) we have
HM(Am_l)w(Ak_M)HLl[tO, . <ec.

(2) Another possibility to improve the result of Theorem 1 would be
to find a sharp bound for one of the related constants considered in [S].
In this respect it is known, e.g., that

ke o <EL! (73)

k,p>
J
In particular, there is equality in (7.3) for p = co.
The hope is to prove that the knot sequence at which the value Ej ,
is attained for p=1 or p=2 is the Bernstein one, in which case the
inequalities

where

Ey

> P

:=infinfinf{ N,— Y ¢N;

4.7 ¢ i)

i

—1 k —1 Nk
E<c2, or E;,<c2

would follow. (It is known that the Bernstein knot sequence is not extreme
for p =00, see [ B3].)
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