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For the p-norm condition number }k, p of the B-spline basis of order k we prove
the upper estimate }k, p<k2k. This proves de Boor's 2k-conjecture up to a polyno-
mial factor. � 1999 Academic Press

1. INTRODUCTION

It is of central importance for working with B-spline series that its condi-
tion number is bounded independently of the underlying knot sequence.
This fact was proved by C. de Boor in 1968 for the sup-norm and in 1973
for any Lp -norm (see [B1] for references). In the paper [B2] he gave the
direct estimate

}k, p<k9k (1.1)

for }k, p , the worst condition number with respect to the p-norm of a
B-spline basis of order k, and conjectured that the real value of }k, p grows
like 2k,

}k, pt2k, (1.2)

which is seen to be far better than (1.1).
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The conjecture was based on numerical calculations of some related con-
stants which moreover gave some evidence that the extreme case occurs for
a knot sequence without interior knots (the so-called Bernstein knots).
Maybe due to this reason, a few papers devoted to the 2k-conjecture for
}k, p were concerned only with the ``Bernstein knots'' conjecture for the
extreme knot sequence, see [B3, C, Ly, S].

These papers gave further support for de Boor's conjecture (1.2), in
particular T. Lyche [Ly] obtained a lower bound for }k, � from which it
follows [S] that

}k, p>ck&1�p2k. (1.3)

In the unpublished manuscript [SS1] we returned to de Boor's direct
approach in [B2], and considered the possibility of improving his
9k-estimate by several modifications of his method. In particular, a slight
revision based on Kolmogorov's estimate for intermediate derivatives had
shown that

}k, p<k#k, #=6.25.

In the previous paper [SS2] we developed a further approach to obtain

}k, p<k1�24k.

In this paper using the same approach we give a surprisingly short and
elementary proof of

Theorem 1. For all k and all p # [1, �],

}k, p<k2k. (1.4)

With respect to (1.2)�(1.3), this confirms C. de Boor's conjecture up to
a polynomial factor.

We show also that the optimal factor which can be obtained in (1.4)
within this approach is k1�2 and discuss further possible approaches by
which this factor could be removed.

2. CONDITION NUMBER AND RELATED CONSTANTS

Let [N� j] be the B-spline basis of order k on a knot sequence t=(tj),
tj<tj+k , normalized with respect to the Lp -norm (1� p��), i.e.,

N� j (x)=(k�(tj+k&tj))1�p Nj (x),
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where [Nj] is the B-spline basis which forms a partition of unity. Recall
here that

Nj (t)=([tj , ..., t j+k&1]&[t j+1 , ..., t j+k])( }&t)k&1
+

and that

Nj (x)>0, x # (t j , tj+k); Nj (x)=0, x � [t j , t j+k]; : Nj=1.

The condition number of the Lp-normalized basis [N� j] is defined as

}k, p, t :=sup
b

&b&lp

&� bjN� j&Lp

sup
b

&� bjN� j&Lp

&b&lp

=sup
b

&b&lp

&� bj N� j&Lp

,

where the Lp -norm is taken with respect to the smallest interval containing
the knot sequence (ti).

The last equality in the above definition follows from normalization

N� j (x)=M 1�p
j (x) N 1�q

j (x), M j (x) :=
k

tj+k&tj
Nj (x), | M j (x) dx=1,

so that

": bjN� j"Lp

=": b jM 1�p
j N 1�q

j "Lp

�"\: b p
j Mj+

1�p

\: Nj+
1�q

"Lp

="\: b p
j Mj+

1�p

"Lp

=": b p
j Mj+"

1�p

L1

�&b&lp
,

with equalities for bj=((tj+k&t j)�k)1�p.
The worst B-spline condition number is defined then as

}k, p :=sup
t

}k, p, t .

Its value gives a measure for the uniform stability of the B-spline basis and
is important for numerical calculations with B-splines.
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Following [B2] we introduce now related constants that are upper
bouds for }k, p . This has been done already in [SS2] but for convenience
of the reader we state here again the relevant lemmas. More details can be
found in [B1, B2, S].

Lemma A. Let H i be the class of functions h # Lq such that

(1) supp h/[ti , ti+k]

(2) | hNj=$ ij

and let

Dk, p :=sup
t

sup
i

inf
h # Hi

[(ti+k&t i)
1�p &h&q],

where 1�p+1�q=1. Then

}k, p�Dk, p .

Now set

�i (x) :=
1

(k&1)!
`

k&1

&=1

(x&ti+&).

Then an easy way for obtaining h # Hi is to set h=( g� i)
(k) for some

appropriate smooth function g. We formulate this as

Lemma B. Let Gi be the class of functions g such that

(1) g�i # W k
q[t i , t i+k],

(2) g�i={0,
�i ,

k- fold at t i ,
k- fold at t i+k ,

and let G (k)
i :=[( g� i)

(k): g # Gi]. Then

G (k)
i /Hi .

Combining Lemmas A and B gives

Corollary. }k, p�Bk, p :=sup
t

sup
i

inf
g # Gi

[(t i+k&ti)
1�p &( g�i)

(k)&q].
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Finally, due to the local character of the quantity Bk, p , it is sufficient to
restrict attention to the meshes 2 of the form

2=(t0�t1� } } } �tk), t0<tk .

Set also

|(x) :=|2(x)=
1

(k&1)!
`

k&1

i=1

(x&t i)=�0(x), (2.1)

and

N(t)=N2(t)=([t0 , ..., tk&1]&[t1 , ..., tk])( }&t)k&1
+ .

Lemma C. For | given via 2 as in (2.1), let G2 be the class of functions
g such that

(1) g| # W k
q[t0 , tk],

(2) g|={0,
|,

k- fold at t0 ,
k- fold at tk ,

and let

Bk, p :=sup
2

inf
g # G2

(tk&t0)1�p &( g|) (k)&q .

Then

}k, p�Bk, p�Bk, 1 . (2.2)

Remark. Lemma A is taken from [B2, p. 123] whereas Lemma B and,
respectively, C are somewhat more accurate versions of what is given in
[B2, Eq. (4.1)]. Namely, they show the possibility to choose a smoothing
function g depending on |. C. de Boor's estimate of Bk, 1 resulting in (1.1)
was based on the inequalities

Bk, 1� inf
g # G2

sup
|

&( g|) (k)&�� inf
g # G2

:
k

i=m \
k
m+ &g (m)&� sup

|
&|(k&m)&�

� :
k

i=m \
k
m+ &g

*
(m)&� sup

|
&|(k&m)&� ,

with some special choice of g
*

# G :=� G2 that is seen to be independent
of |. Notice, that in the latter sum for any choice of g

*
# G the term with

m=k is equal at least to 4k&1 (see [B2, p. 132]).
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3. PROOF OF THEOREM 1

The idea in the previous paper [SS2] was to choose g # G2 as the
indefinite integral of the L� -normalized B-spline, i.e.,

g2(x) :=
k

tk&t0
|

x

t0

N2(t) dt.

Then, the inclusion g2 # G2 is almost evident (see [SS2]), and thus we can
majorize the constant Bk, 1 by

Bk, 1�Sk, 1 :=sup
2

(tk&t0) &s (k)
2 &� , (3.1)

where

s2 := g2|2 . (3.2)

Notice that supp s (k)
2 /[t0 , tk], so that actually the L� -norm in (3.1) is

taken over [t0 , tk].
In view of

(tk&t0) s (k)
2 (x)=k :

k

m=1
\k

m+ N (m&1)
2 (x) | (k&m)

2 (x), (3.3)

we showed in [SS2] that, for any 2 and m=1, ..., k,

&N (m&1)
2 | (k&m)

2 &��\ k&1
m&1+ , (3.4)

which, by Lemma C and (3.1)�(3.3), implies the bound

}k, p<k1�24k.

Here we improve (3.4) by

Lemma 1. For any 2, and m=1, ..., k

&N (m&1)
2 | (k&m)

2 &��1. (3.5)

Now, by (3.1)�(3.5) and Lemma C,

}k, p�Sk, 1�k :
k

m=1
\ k

m+=k(2k&1)<k2k

which proves Theorem 1.

222 SCHERER AND SHADRIN



Remark. If | has a multiple zero

{& :=t+&
=t+&+1= } } } =t+&+ p&&1

of multiplicity p& , then N (k& p&)
2 has a jump at {& . In this case we can define

the value N (k& p&+q)
2 ({&) |( p&&1&q)({&) as a limit either from the left or

from the right. This limit is equal to zero, if {& # (t0 , tk). Also this definition
justifies the equality (3.3).

4. LEE'S FORMULA AND A LEMMA OF INTERPOLATION

For arbitrary r # Z+ and t # R, set

,r(x, t) :=
1
r !

(x&t) r
+ ,

and define Q$1
(x, t) and Q$2

(x, t) as algebraic polynomials of degree k&1
with respect to x that interpolate the function ,k&1( } , t) on the meshes

$1=(t0 , t1 , ..., tk&1), $2=(t1 , ..., tk&1 , tk),

respectively.
The following nice formula is due to Lee [L].

Lemma D [L]. For any 2,

N(t) |(x)=Q$1
(x, t)&Q$2

(x, t). (4.1)

Proof [L]. The difference on the right-hand side is an algebraic poly-
nomial of degree k&1 with respect to x that is equal to zero at x=
t1 , ..., tk&1 , hence

Q$1
(x, t)&Q$2

(x, t)=c(t) `
k&1

i=1

(x&ti).

Further, since the leading coefficient of the Lagrange interpolant to f on
the mesh ({i)

k
i=1 is equal to [{1 , ..., {k] f, we have

c(t)=([t0 , ..., tk&1]&[t1 , ..., tk]) ,k&1( } , t)=:
1

(k&1)!
N(t),

and the lemma is proved.
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We will use Lee's formula (4.1) to evaluate the product N (m&1)(t) |(k&m)(t)
by taking the corresponding partial derivatives with respect to x and t in
(4.1) and setting x=t.

Our next two lemmas give a bound for the values obtained in that way
on the right-hand side of (4.1).

For arbitrary p # N, p>r, and any sequence

$=({0�{1� } } } �{p),

define, for a fixed t,

Qt(x) :=Q(x, t) :=Q(x, t; ,r , $)

as the polynomial of degree p with respect to x that interpolates ,r( } , t)
at $.

Lemma 2. For any admissible p, r, t, $,

0�Q (r)
t (x)| x=t�1, (4.2)

where the derivative is taken with respect to x.

Proof. First we prove

(A) The case r=0. Then Qt( } ) is a polynomial of degree �p that
interpolates, for this fixed t, the function

(x&t)0
+ :={1, x�t;

0, x<t.

We have to prove that

0�Qt(x)|x=t�1 (4.3)

and distinguish the following cases:

(A1) If t={i for some i, then (4.3) is evident.

(A2) If all the points of interpolation lie either to the left or to the
right of t, i.e., if

{p<t, or t<{0 ,

then

Qt#0, or Qt#1,

respectively, and (4.3) holds.
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(A3) If t lies between two points, i.e., for some &

{0� } } } �{&<t<{&+1� } } } �{p ,

then in view of Q$t(x)=[Qt&,0( } , t)]$ (x) for x{t, the polynomial Q$t(x)
has at least & zeros on the left of {& , and at least p&&&1 zeros on the right
of {&+1 , which gives p&1 zeros in total. Hence Q$t has no zeros in
({& , {&+1), so that Qt is monotone in ({& , {&+1), that is,

0=Qt({&)<Qt(t)<Qt({&+1)=1.

(B) The case r>0. This case is reduced to the case r=0 by Rolle's
theorem. The difference ,r( } , t)&Qt has p+1 zeros (counting multiplicity),
thus its r th derivative ,0( } , t)&Q (r)

t must have at least p+1&r changes of
sign.

If (4.2) does not hold, then this function does not change sign at x=t,
and Q (r)

t is a polynomials of degree p&r that interpolates ,0( } , t) at
p&r+1 points all distinct from t. But according to the Case (A3) this
would imply (4.2), a contradiction.

Hence, (4.2) holds, and the lemma is proved.

Lemma 3. For any admissible p, r, t, $,

0�(&1)s �r&s

�xr&s

�s

�ts Q(x, t)|x=t�1. (4.4)

Proof. Let li be the fundamental Lagrange polynomials of degree p for
the mesh $, i.e., li ({j)=$ij . Then Qt=Q( } , t), which is the Lagrange inter-
polant to ,r( } , t), can be expressed as

Q(x, t)=
1
r !

:
p

i=0

({i&t)r
+ li (x).

Thus, we obtain

(&1)s �s

�ts Q(x, t)=
1

(r&s) !
:
p

i=0

({i&t)r&s
+ li (x).

It is readily seen that

Q0, t(x) :=Q0(x, t) :=(&1)s �s

�ts Q(x, t)
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is a polynomial of degree p with respect to x that interpolates

,r&s( } , t)=
1

(r&s) !
( }&t) r&s

+

at the same mesh $. Now (4.4) follows from Lemma 2.

5. PROOF OF LEMMA 1

We need to bound

N (s)(t) |(k&1&s)(t)=N (s)(t) |(k&1&s)(x)|x=t , s=0, 1, ..., k&1.

Now according to Lemma D

N (s)(t) |(k&1&s)(x)=
�k&1&s

�xk&1&s

�s

�ts Q$1
(x, t)&

�k&1&s

�xk&1&s

�s

�ts Q$2
(x, t),

and by Lemma 3 for any $

0�(&1)s �k&1&s

�xk&1&s

�s

�ts Q$(x, t)|x=t�1.

Hence, since both terms are of the same sign and of absolute value �1,

|N (s)(t) } |(k&1&s)(t)|�1,

which proves Lemma 1.

6. ON THE FACTOR k IN THEOREM 1

Numerical computations [B3] show that

}k, p�c2k, (6.1)

so a natural question is whether the factor k in the bound

}k, p<k2k (6.2)

of Theorem 1 can be removed.
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A simple example will show now that within the particular method we
used in Section 3 (see (3.1)), an extra polynomial factor - k appears
unavoidably. Namely, one can prove that for some choice of 2

*

Sk, 1�(tk&t0) &s (k)
2

*
&��ck1�22k.

In fact, in the case of the Bernstein knots 2& in [0, 1], i.e., for

|&(x)=
1

(k&1)!
x&(x&1)k&1&&,

we have

N&(x)=\k&1
& + xk&1&&(1&x)&,

and obtain

s (k)
2&

(x)=
k

(k&1)! \
k&1

& +
_ :

k

m=1 \
k
m+ [xk&1&&(1&x)&] (m&1) [x&(x&1)k&1&&] (k&m).

It is not hard to see that at x=1 the m th term vanishes, unless m=&+1,
which gives

|s (k)
2&

(1)|=
k

(k&1)! \
k&1

& + } \ k
&+1+ & ! (k&1&&) !=k \ k

&+1+ .

With this, we take &
*

+1=wk�2x to obtain

|s2
*
(1)|=k \ k

wk�2x+>ck1�22k.

7. POSSIBLE REFINEMENTS

We describe here some further approaches that may permit removal of
the polynomial factor in the upper bound for the sup-norm condition
number }k, � .
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(1) The first approach is to majorize }k, � using the intermediate
estimate (2.2) with the value Bk, � instead of Bk, 1 used in Theorem 1, that
is,

}k, ��Bk, � .

Then the desired 2k-bound without an extra factor will follow from the
following

Conjecture. For any |=|2 , there exists a function g
*

# G2 such that

sign g
*
(m)(x)=sign |(k&m)(x), x # [t0 , tk], m=1, ..., k. (7.1)

This conjecture implies that

&g
*
(m)| (k&m)&L1[t0 , tk]= }|

tk

t0

g
*
(m)(x) |(k&m)(x) dx } .

Then observe that, because of the boundary conditions satisfied by g
*

and
the way g

*
and |2 are normalized,

(&1)m |
tk

t0

g
*
(m)(x) | (k&m)(x) dx=|

tk

t0

g$
*

(x) |(k&1)(x) dx=1.

Hence

&g
*
(m)|(k&m)&L1[t0 , tk]=1, m=1, ..., k, (7.2)

and using this bound, one could show, exactly as in Section 3, that

}k, ��Bk, �� :
k

m=1
\ k

m+=2k&1.

Remark. (1) A function g
*

satisfying (7.1) should in a sense be close
to the function g2 considered in Section 3 (though it is not necessarily
unique). Moreover, g2 can serve as g

*
for the polynomials |2&

with the
Bernstein knots

|2&
(x)=c(x&t0)& (x&tk)k&1&&.

Also, it looks quite probable that, even though the equality (7.2) is not
valid with g

*
= g2 for arbitrary 2, there holds

&g (m)
2 | (k&m)

2 &L1[t0 , tk]�c, m=1, ..., k,
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that is, for the B-spline M2(x)=(k�(tk&t0)) N2(x) we have

&M (m&1)
2 | (k&m)

2 &L1[t0 , tk]�c.

(2) Another possibility to improve the result of Theorem 1 would be
to find a sharp bound for one of the related constants considered in [S].
In this respect it is known, e.g., that

}k, ��E&1
k, p , (7.3)

where

Ek, p :=inf
2

inf
j

inf
ci {"Nj& :

i{ j

ciNi"p= .

In particular, there is equality in (7.3) for p=�.
The hope is to prove that the knot sequence at which the value Ek, p

is attained for p=1 or p=2 is the Bernstein one, in which case the
inequalities

E&1
k, 1<c2k, or E&1

k, 2<c2k

would follow. (It is known that the Bernstein knot sequence is not extreme
for p=�, see [B3].)
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