New Upper Bound for the B-Spline Basis Condition Number

II. A Proof of de Boor's 2^{k}-Conjecture

K. Scherer
Institut für Angewandte Mathematik, Universität Bonn, 53115 Bonn, Germany
and

A. Yu. Shadrin*

Computing Center, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
Communicated by Carl de Boor
Received September 26, 1997; accepted in revised form August 11, 1998

For the p-norm condition number $\kappa_{k, p}$ of the B -spline basis of order k we prove the upper estimate $\kappa_{k, p}<k 2^{k}$. This proves de Boor's 2^{k}-conjecture up to a polynomial factor. © 1999 Academic Press

1. INTRODUCTION

It is of central importance for working with B -spline series that its condition number is bounded independently of the underlying knot sequence. This fact was proved by C. de Boor in 1968 for the sup-norm and in 1973 for any L_{p}-norm (see [B1] for references). In the paper [B2] he gave the direct estimate

$$
\begin{equation*}
\kappa_{k, p}<k 9^{k} \tag{1.1}
\end{equation*}
$$

for $\kappa_{k, p}$, the worst condition number with respect to the p-norm of a B-spline basis of order k, and conjectured that the real value of $\kappa_{k, p}$ grows like 2^{k},

$$
\begin{equation*}
\kappa_{k, p} \sim 2^{k}, \tag{1.2}
\end{equation*}
$$

which is seen to be far better than (1.1).

[^0]The conjecture was based on numerical calculations of some related constants which moreover gave some evidence that the extreme case occurs for a knot sequence without interior knots (the so-called Bernstein knots). Maybe due to this reason, a few papers devoted to the 2^{k}-conjecture for $\kappa_{k, p}$ were concerned only with the "Bernstein knots" conjecture for the extreme knot sequence, see [B3, C, Ly, S].

These papers gave further support for de Boor's conjecture (1.2), in particular T. Lyche [Ly] obtained a lower bound for $\kappa_{k, \infty}$ from which it follows [S] that

$$
\begin{equation*}
\kappa_{k, p}>c k^{-1 / p} 2^{k} . \tag{1.3}
\end{equation*}
$$

In the unpublished manuscript [SS1] we returned to de Boor's direct approach in [B2], and considered the possibility of improving his 9^{k}-estimate by several modifications of his method. In particular, a slight revision based on Kolmogorov's estimate for intermediate derivatives had shown that

$$
\kappa_{k, p}<k \gamma^{k}, \quad \gamma=6.25 .
$$

In the previous paper [SS2] we developed a further approach to obtain

$$
\kappa_{k, p}<k^{1 / 2} 4^{k} .
$$

In this paper using the same approach we give a surprisingly short and elementary proof of

Theorem 1. For all k and all $p \in[1, \infty]$,

$$
\begin{equation*}
\kappa_{k, p}<k 2^{k} . \tag{1.4}
\end{equation*}
$$

With respect to (1.2)-(1.3), this confirms C. de Boor's conjecture up to a polynomial factor.

We show also that the optimal factor which can be obtained in (1.4) within this approach is $k^{1 / 2}$ and discuss further possible approaches by which this factor could be removed.

2. CONDITION NUMBER AND RELATED CONSTANTS

Let $\left\{\hat{N}_{j}\right\}$ be the B-spline basis of order k on a knot sequence $t=\left(t_{j}\right)$, $t_{j}<t_{j+k}$, normalized with respect to the L_{p}-norm $(1 \leqslant p \leqslant \infty)$, i.e.,

$$
\hat{N}_{j}(x)=\left(k /\left(t_{j+k}-t_{j}\right)\right)^{1 / p} N_{j}(x),
$$

where $\left\{N_{j}\right\}$ is the B-spline basis which forms a partition of unity. Recall here that

$$
N_{j}(t)=\left(\left[t_{j}, \ldots, t_{j+k-1}\right]-\left[t_{j+1}, \ldots, t_{j+k}\right]\right)(\cdot-t)_{+}^{k-1}
$$

and that

$$
N_{j}(x)>0, \quad x \in\left(t_{j}, t_{j+k}\right) ; \quad N_{j}(x)=0, \quad x \notin\left[t_{j}, t_{j+k}\right] ; \quad \sum N_{j}=1 .
$$

The condition number of the L_{p}-normalized basis $\left\{\hat{N}_{j}\right\}$ is defined as

$$
\begin{aligned}
\kappa_{k, p, t} & :=\sup _{b} \frac{\|b\|_{l_{p}}}{\left\|\sum b_{j} \hat{N}_{j}\right\|_{L_{p}}} \sup _{b} \frac{\left\|\sum b_{j} \hat{N}_{j}\right\|_{L_{p}}}{\|b\|_{l_{p}}} \\
& =\sup _{b} \frac{\|b\|_{l_{p}}}{\left\|\sum b_{j} \hat{N}_{j}\right\|_{L_{p}}},
\end{aligned}
$$

where the L_{p}-norm is taken with respect to the smallest interval containing the knot sequence $\left(t_{i}\right)$.

The last equality in the above definition follows from normalization

$$
\hat{N}_{j}(x)=M_{j}^{1 / p}(x) N_{j}^{1 / q}(x), \quad M_{j}(x):=\frac{k}{t_{j+k}-t_{j}} N_{j}(x), \quad \int M_{j}(x) d x=1
$$

so that

$$
\begin{aligned}
\left\|\sum b_{j} \hat{N}_{j}\right\|_{L_{p}} & =\left\|\sum b_{j} M_{j}^{1 / p} N_{j}^{1 / q}\right\|_{L_{p}} \leqslant\left\|\left(\sum b_{j}^{p} M_{j}\right)^{1 / p}\left(\sum N_{j}\right)^{1 / q}\right\|_{L_{p}} \\
& \left.=\left\|\left(\sum b_{j}^{p} M_{j}\right)^{1 / p}\right\|_{L_{p}}=\| \sum b_{j}^{p} M_{j}\right) \|_{L_{1}}^{1 / p} \\
& \leqslant\|b\|_{L_{p}},
\end{aligned}
$$

with equalities for $b_{j}=\left(\left(t_{j+k}-t_{j}\right) / k\right)^{1 / p}$.
The worst B -spline condition number is defined then as

$$
\kappa_{k, p}:=\sup _{t} \kappa_{k, p, t} .
$$

Its value gives a measure for the uniform stability of the B-spline basis and is important for numerical calculations with B-splines.

Following [B2] we introduce now related constants that are upper bouds for $\kappa_{k, p}$. This has been done already in [SS2] but for convenience of the reader we state here again the relevant lemmas. More details can be found in $[B 1, B 2, S]$.

Lemma A. Let H_{i} be the class of functions $h \in L_{q}$ such that

$$
\begin{aligned}
& \text { (1) } \operatorname{supp} h \subset\left[t_{i}, t_{i+k}\right] \\
& \text { (2) } \int h N_{j}=\delta_{i j}
\end{aligned}
$$

and let

$$
D_{k, p}:=\sup _{t} \sup _{i} \inf _{h \in H_{i}}\left\{\left(t_{i+k}-t_{i}\right)^{1 / p}\|h\|_{q}\right\},
$$

where $1 / p+1 / q=1$. Then

$$
\kappa_{k, p} \leqslant D_{k, p} .
$$

Now set

$$
\psi_{i}(x):=\frac{1}{(k-1)!} \prod_{v=1}^{k-1}\left(x-t_{i+v}\right) .
$$

Then an easy way for obtaining $h \in H_{i}$ is to set $h=\left(g \psi_{i}\right)^{(k)}$ for some appropriate smooth function g. We formulate this as

Lemma B. Let G_{i} be the class of functions g such that

$$
\begin{aligned}
& \text { (1) } g \psi_{i} \in W_{q}^{k}\left[t_{i}, t_{i+k}\right], \\
& \text { (2) } g \psi_{i}= \begin{cases}0, & k \text {-fold at } t_{i}, \\
\psi_{i}, & k \text {-fold at } t_{i+k},\end{cases}
\end{aligned}
$$

and let $G_{i}^{(k)}:=\left\{\left(g \psi_{i}\right)^{(k)}: g \in G_{i}\right\}$. Then

$$
G_{i}^{(k)} \subset H_{i} .
$$

Combining Lemmas A and B gives

$$
\text { Corollary. } \quad \kappa_{k, p} \leqslant B_{k, p}:=\sup _{t} \sup _{i} \inf _{g \in G_{i}}\left\{\left(t_{i+k}-t_{i}\right)^{1 / p}\left\|\left(g \psi_{i}\right)^{(k)}\right\|_{q}\right\} .
$$

Finally, due to the local character of the quantity $B_{k, p}$, it is sufficient to restrict attention to the meshes Δ of the form

$$
\Delta=\left(t_{0} \leqslant t_{1} \leqslant \cdots \leqslant t_{k}\right), \quad t_{0}<t_{k} .
$$

Set also

$$
\begin{equation*}
\omega(x):=\omega_{\Delta}(x)=\frac{1}{(k-1)!} \prod_{i=1}^{k-1}\left(x-t_{i}\right)=\psi_{0}(x), \tag{2.1}
\end{equation*}
$$

and

$$
N(t)=N_{\Delta}(t)=\left(\left[t_{0}, \ldots, t_{k-1}\right]-\left[t_{1}, \ldots, t_{k}\right]\right)(\cdot-t)_{+}^{k-1} .
$$

Lemma C. For ω given via Δ as in (2.1), let G_{Δ} be the class of functions g such that

$$
\begin{aligned}
& \text { (1) } g \omega \in W_{q}^{k}\left[t_{0}, t_{k}\right], \\
& \text { (2) } g \omega= \begin{cases}0, & k \text {-fold at } t_{0}, \\
\omega, & k \text {-fold at } t_{k},\end{cases}
\end{aligned}
$$

and let

$$
B_{k, p}:=\sup _{\Delta} \inf _{g \in G_{\Delta}}\left(t_{k}-t_{0}\right)^{1 / p}\left\|(g \omega)^{(k)}\right\|_{q} .
$$

Then

$$
\begin{equation*}
\kappa_{k, p} \leqslant B_{k, p} \leqslant B_{k, 1} . \tag{2.2}
\end{equation*}
$$

Remark. Lemma A is taken from [B2, p. 123] whereas Lemma B and, respectively, C are somewhat more accurate versions of what is given in [B2, Eq. (4.1)]. Namely, they show the possibility to choose a smoothing function g depending on ω. C. de Boor's estimate of $B_{k, 1}$ resulting in (1.1) was based on the inequalities

$$
\begin{aligned}
B_{k, 1} & \leqslant \inf _{g \in G_{A}} \sup _{\omega}\left\|(g \omega)^{(k)}\right\|_{\infty} \leqslant \inf _{g \in G_{A}} \sum_{i=m}^{k}\binom{k}{m}\left\|g^{(m)}\right\|_{\infty} \sup _{\omega}\left\|\omega^{(k-m)}\right\|_{\infty} \\
& \leqslant \sum_{i=m}^{k}\binom{k}{m}\left\|g_{*}^{(m)}\right\|_{\infty} \sup _{\omega}\left\|\omega^{(k-m)}\right\|_{\infty},
\end{aligned}
$$

with some special choice of $g_{*} \in G:=\bigcap G_{\Delta}$ that is seen to be independent of ω. Notice, that in the latter sum for any choice of $g_{*} \in G$ the term with $m=k$ is equal at least to 4^{k-1} (see [B2, p. 132]).

3. PROOF OF THEOREM 1

The idea in the previous paper [SS2] was to choose $g \in G_{\Delta}$ as the indefinite integral of the L_{∞}-normalized B-spline, i.e.,

$$
g_{\Delta}(x):=\frac{k}{t_{k}-t_{0}} \int_{t_{0}}^{x} N_{\Delta}(t) d t .
$$

Then, the inclusion $g_{\Delta} \in G_{\Delta}$ is almost evident (see [SS2]), and thus we can majorize the constant $B_{k, 1}$ by

$$
\begin{equation*}
B_{k, 1} \leqslant S_{k, 1}:=\sup _{\Delta}\left(t_{k}-t_{0}\right)\left\|s_{\Delta}^{(k)}\right\|_{\infty}, \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{\Delta}:=g_{\Delta} \omega_{\Delta} . \tag{3.2}
\end{equation*}
$$

Notice that $\operatorname{supp} s_{\Delta}^{(k)} \subset\left[t_{0}, t_{k}\right]$, so that actually the L_{∞}-norm in (3.1) is taken over $\left[t_{0}, t_{k}\right]$.

In view of

$$
\begin{equation*}
\left(t_{k}-t_{0}\right) s_{\Delta}^{(k)}(x)=k \sum_{m=1}^{k}\binom{k}{m} N_{\Delta}^{(m-1)}(x) \omega_{\Delta}^{(k-m)}(x) \tag{3.3}
\end{equation*}
$$

we showed in [SS2] that, for any Δ and $m=1, \ldots, k$,

$$
\begin{equation*}
\left\|N_{\Delta}^{(m-1)} \omega_{\Delta}^{(k-m)}\right\|_{\infty} \leqslant\binom{ k-1}{m-1} \tag{3.4}
\end{equation*}
$$

which, by Lemma C and (3.1)-(3.3), implies the bound

$$
\kappa_{k, p}<k^{1 / 2} 4^{k} .
$$

Here we improve (3.4) by
Lemma 1. For any Δ, and $m=1, \ldots, k$

$$
\begin{equation*}
\left\|N_{\Delta}^{(m-1)} \omega_{\Delta}^{(k-m)}\right\|_{\infty} \leqslant 1 . \tag{3.5}
\end{equation*}
$$

Now, by (3.1)-(3.5) and Lemma C,

$$
\kappa_{k, p} \leqslant S_{k, 1} \leqslant k \sum_{m=1}^{k}\binom{k}{m}=k\left(2^{k}-1\right)<k 2^{k}
$$

which proves Theorem 1.

Remark. If ω has a multiple zero

$$
\tau_{v}:=t_{\mu_{v}}=t_{\mu_{v}+1}=\cdots=t_{\mu_{v}+p_{v}-1}
$$

of multiplicity p_{v}, then $N_{\Delta}^{\left(k-p_{v}\right)}$ has a jump at τ_{v}. In this case we can define the value $N_{\Delta}^{\left(k-p_{v}+q\right)}\left(\tau_{v}\right) \omega^{\left(p_{v}-1-q\right)}\left(\tau_{v}\right)$ as a limit either from the left or from the right. This limit is equal to zero, if $\tau_{v} \in\left(t_{0}, t_{k}\right)$. Also this definition justifies the equality (3.3).

4. LEE'S FORMULA AND A LEMMA OF INTERPOLATION

For arbitrary $r \in \mathbf{Z}_{+}$and $t \in \mathbf{R}$, set

$$
\phi_{r}(x, t):=\frac{1}{r!}(x-t)_{+}^{r},
$$

and define $Q_{\delta_{1}}(x, t)$ and $Q_{\delta_{2}}(x, t)$ as algebraic polynomials of degree $k-1$ with respect to x that interpolate the function $\phi_{k-1}(\cdot, t)$ on the meshes

$$
\delta_{1}=\left(t_{0}, t_{1}, \ldots, t_{k-1}\right), \quad \delta_{2}=\left(t_{1}, \ldots, t_{k-1}, t_{k}\right),
$$

respectively.
The following nice formula is due to Lee [L].
Lemma D [L]. For any Δ,

$$
\begin{equation*}
N(t) \omega(x)=Q_{\delta_{1}}(x, t)-Q_{\delta_{2}}(x, t) . \tag{4.1}
\end{equation*}
$$

Proof [L]. The difference on the right-hand side is an algebraic polynomial of degree $k-1$ with respect to x that is equal to zero at $x=$ t_{1}, \ldots, t_{k-1}, hence

$$
Q_{\delta_{1}}(x, t)-Q_{\delta_{2}}(x, t)=c(t) \prod_{i=1}^{k-1}\left(x-t_{i}\right) .
$$

Further, since the leading coefficient of the Lagrange interpolant to f on the mesh $\left(\tau_{i}\right)_{i=1}^{k}$ is equal to $\left[\tau_{1}, \ldots, \tau_{k}\right] f$, we have

$$
c(t)=\left(\left[t_{0}, \ldots, t_{k-1}\right]-\left[t_{1}, \ldots, t_{k}\right]\right) \phi_{k-1}(\cdot, t)=: \frac{1}{(k-1)!} N(t),
$$

and the lemma is proved.

We will use Lee's formula (4.1) to evaluate the product $N^{(m-1)}(t) \omega^{(k-m)}(t)$ by taking the corresponding partial derivatives with respect to x and t in (4.1) and setting $x=t$.

Our next two lemmas give a bound for the values obtained in that way on the right-hand side of (4.1).

For arbitrary $p \in \mathbf{N}, p>r$, and any sequence

$$
\delta=\left(\tau_{0} \leqslant \tau_{1} \leqslant \cdots \leqslant \tau_{p}\right),
$$

define, for a fixed t,

$$
Q_{t}(x):=Q(x, t):=Q\left(x, t ; \phi_{r}, \delta\right)
$$

as the polynomial of degree p with respect to x that interpolates $\phi_{r}(\cdot, t)$ at δ.

Lemma 2. For any admissible p, r, t, δ,

$$
\begin{equation*}
0 \leqslant\left. Q_{t}^{(r)}(x)\right|_{x=t} \leqslant 1 \tag{4.2}
\end{equation*}
$$

where the derivative is taken with respect to x.
Proof. First we prove
(A) The case $r=0$. Then $Q_{t}(\cdot)$ is a polynomial of degree $\leqslant p$ that interpolates, for this fixed t, the function

$$
(x-t)_{+}^{0}:= \begin{cases}1, & x \geqslant t \\ 0, & x<t .\end{cases}
$$

We have to prove that

$$
\begin{equation*}
0 \leqslant\left. Q_{t}(x)\right|_{x=t} \leqslant 1 \tag{4.3}
\end{equation*}
$$

and distinguish the following cases:
(A1) If $t=\tau_{i}$ for some i, then (4.3) is evident.
(A2) If all the points of interpolation lie either to the left or to the right of t, i.e., if

$$
\tau_{p}<t, \quad \text { or } \quad t<\tau_{0}
$$

then

$$
Q_{t} \equiv 0, \quad \text { or } \quad Q_{t} \equiv 1
$$

respectively, and (4.3) holds.
(A3) If t lies between two points, i.e., for some v

$$
\tau_{0} \leqslant \cdots \leqslant \tau_{v}<t<\tau_{v+1} \leqslant \cdots \leqslant \tau_{p}
$$

then in view of $Q_{t}^{\prime}(x)=\left[Q_{t}-\phi_{0}(\cdot, t)\right]^{\prime}(x)$ for $x \neq t$, the polynomial $Q_{t}^{\prime}(x)$ has at least v zeros on the left of τ_{v}, and at least $p-v-1$ zeros on the right of τ_{v+1}, which gives $p-1$ zeros in total. Hence Q_{t}^{\prime} has no zeros in $\left(\tau_{v}, \tau_{v+1}\right)$, so that Q_{t} is monotone in ($\left.\tau_{v}, \tau_{v+1}\right)$, that is,

$$
0=Q_{t}\left(\tau_{v}\right)<Q_{t}(t)<Q_{t}\left(\tau_{v+1}\right)=1 .
$$

(B) The case $r>0$. This case is reduced to the case $r=0$ by Rolle's theorem. The difference $\phi_{r}(\cdot, t)-Q_{t}$ has $p+1$ zeros (counting multiplicity), thus its r th derivative $\phi_{0}(\cdot, t)-Q_{t}^{(r)}$ must have at least $p+1-r$ changes of sign.

If (4.2) does not hold, then this function does not change sign at $x=t$, and $Q_{t}^{(r)}$ is a polynomials of degree $p-r$ that interpolates $\phi_{0}(\cdot, t)$ at $p-r+1$ points all distinct from t. But according to the Case (A3) this would imply (4.2), a contradiction.

Hence, (4.2) holds, and the lemma is proved.

Lemma 3. For any admissible p, r, t, δ,

$$
\begin{equation*}
0 \leqslant\left.(-1)^{s} \frac{\partial^{r-s}}{\partial x^{r-s}} \frac{\partial^{s}}{\partial t^{s}} Q(x, t)\right|_{x=t} \leqslant 1 . \tag{4.4}
\end{equation*}
$$

Proof. Let l_{i} be the fundamental Lagrange polynomials of degree p for the mesh δ, i.e., $l_{i}\left(\tau_{j}\right)=\delta_{i j}$. Then $Q_{t}=Q(\cdot, t)$, which is the Lagrange interpolant to $\phi_{r}(\cdot, t)$, can be expressed as

$$
Q(x, t)=\frac{1}{r!} \sum_{i=0}^{p}\left(\tau_{i}-t\right)_{+}^{r} l_{i}(x) .
$$

Thus, we obtain

$$
(-1)^{s^{s}} \frac{\partial^{s}}{\partial t^{s}} Q(x, t)=\frac{1}{(r-s)!} \sum_{i=0}^{p}\left(\tau_{i}-t\right)_{+}^{r-s} l_{i}(x) .
$$

It is readily seen that

$$
Q_{0, t}(x):=Q_{0}(x, t):=(-1)^{s} \frac{\partial^{s}}{\partial t^{s}} Q(x, t)
$$

is a polynomial of degree p with respect to x that interpolates

$$
\phi_{r-s}(\cdot, t)=\frac{1}{(r-s)!}(\cdot-t)_{+}^{r-s}
$$

at the same mesh δ. Now (4.4) follows from Lemma 2.

5. PROOF OF LEMMA 1

We need to bound

$$
N^{(s)}(t) \omega^{(k-1-s)}(t)=\left.N^{(s)}(t) \omega^{(k-1-s)}(x)\right|_{x=t}, \quad s=0,1, \ldots, k-1 .
$$

Now according to Lemma D

$$
N^{(s)}(t) \omega^{(k-1-s)}(x)=\frac{\partial^{k-1-s}}{\partial x^{k-1-s}} \frac{\partial^{s}}{\partial t^{s}} Q_{\delta_{1}}(x, t)-\frac{\partial^{k-1-s}}{\partial x^{k-1-s}} \frac{\partial^{s}}{\partial t^{s}} Q_{\delta_{2}}(x, t),
$$

and by Lemma 3 for any δ

$$
0 \leqslant\left.(-1)^{s} \frac{\partial^{k-1-s}}{\partial x^{k-1-s}} \frac{\partial^{s}}{\partial t^{s}} Q_{\delta}(x, t)\right|_{x=t} \leqslant 1 .
$$

Hence, since both terms are of the same sign and of absolute value $\leqslant 1$,

$$
\left|N^{(s)}(t) \cdot \omega^{(k-1-s)}(t)\right| \leqslant 1,
$$

which proves Lemma 1.

6. ON THE FACTOR k IN THEOREM 1

Numerical computations [B3] show that

$$
\begin{equation*}
\kappa_{k, p} \leqslant c 2^{k}, \tag{6.1}
\end{equation*}
$$

so a natural question is whether the factor k in the bound

$$
\begin{equation*}
\kappa_{k, p}<k 2^{k} \tag{6.2}
\end{equation*}
$$

of Theorem 1 can be removed.

A simple example will show now that within the particular method we used in Section 3 (see (3.1)), an extra polynomial factor \sqrt{k} appears unavoidably. Namely, one can prove that for some choice of Δ_{*}

$$
S_{k, 1} \geqslant\left(t_{k}-t_{0}\right)\left\|s_{\Delta_{*}}^{(k)}\right\|_{\infty} \geqslant c k^{1 / 2} 2^{k} .
$$

In fact, in the case of the Bernstein knots Δ_{v} in $[0,1]$, i.e., for

$$
\omega_{v}(x)=\frac{1}{(k-1)!} x^{v}(x-1)^{k-1-v},
$$

we have

$$
N_{v}(x)=\binom{k-1}{v} x^{k-1-v}(1-x)^{v},
$$

and obtain

$$
\begin{aligned}
s_{\Delta_{v}}^{(k)}(x)= & \frac{k}{(k-1)!}\binom{k-1}{v} \\
& \times \sum_{m=1}^{k}\binom{k}{m}\left[x^{k-1-v}(1-x)^{v}\right]^{(m-1)}\left[x^{v}(x-1)^{k-1-v}\right]^{(k-m)} .
\end{aligned}
$$

It is not hard to see that at $x=1$ the m th term vanishes, unless $m=v+1$, which gives

$$
\left|s_{\Delta_{v}}^{(k)}(1)\right|=\frac{k}{(k-1)!}\binom{k-1}{v} \cdot\binom{k}{v+1} v!(k-1-v)!=k\binom{k}{v+1} .
$$

With this, we take $v_{*}+1=\lfloor k / 2\rfloor$ to obtain

$$
\left|s_{\Delta_{*}}(1)\right|=k\binom{k}{\lfloor k / 2\rfloor}>c k^{1 / 2} 2^{k} .
$$

7. POSSIBLE REFINEMENTS

We describe here some further approaches that may permit removal of the polynomial factor in the upper bound for the sup-norm condition number $\kappa_{k, \infty}$.
(1) The first approach is to majorize $\kappa_{k, \infty}$ using the intermediate estimate (2.2) with the value $B_{k, \infty}$ instead of $B_{k, 1}$ used in Theorem 1, that is,

$$
\kappa_{k, \infty} \leqslant B_{k, \infty} .
$$

Then the desired 2^{k}-bound without an extra factor will follow from the following

Conjecture. For any $\omega=\omega_{\Delta}$, there exists a function $g_{*} \in G_{\Delta}$ such that

$$
\begin{equation*}
\operatorname{sign} g_{*}^{(m)}(x)=\operatorname{sign} \omega^{(k-m)}(x), \quad x \in\left[t_{0}, t_{k}\right], \quad m=1, \ldots, k \tag{7.1}
\end{equation*}
$$

This conjecture implies that

$$
\left\|g_{*}^{(m)} \omega^{(k-m)}\right\|_{L_{1}\left[t_{0}, t_{k}\right]}=\left|\int_{t_{0}}^{t_{k}} g_{*}^{(m)}(x) \omega^{(k-m)}(x) d x\right|
$$

Then observe that, because of the boundary conditions satisfied by g_{*} and the way g_{*} and ω_{Δ} are normalized,

$$
(-1)^{m} \int_{t_{0}}^{t_{k}} g_{*}^{(m)}(x) \omega^{(k-m)}(x) d x=\int_{t_{0}}^{t_{k}} g_{*}^{\prime}(x) \omega^{(k-1)}(x) d x=1 .
$$

Hence

$$
\begin{equation*}
\left\|g_{*}^{(m)} \omega^{(k-m)}\right\|_{L_{1}\left[t_{0}, t_{k}\right]}=1, \quad m=1, \ldots, k, \tag{7.2}
\end{equation*}
$$

and using this bound, one could show, exactly as in Section 3, that

$$
\kappa_{k, \infty} \leqslant B_{k, \infty} \leqslant \sum_{m=1}^{k}\binom{k}{m}=2^{k}-1 .
$$

Remark. (1) A function g_{*} satisfying (7.1) should in a sense be close to the function g_{Δ} considered in Section 3 (though it is not necessarily unique). Moreover, g_{Δ} can serve as g_{*} for the polynomials $\omega_{\Delta_{v}}$ with the Bernstein knots

$$
\omega_{\Delta_{v}}(x)=c\left(x-t_{0}\right)^{v}\left(x-t_{k}\right)^{k-1-v} .
$$

Also, it looks quite probable that, even though the equality (7.2) is not valid with $g_{*}=g_{\Delta}$ for arbitrary Δ, there holds

$$
\left\|g_{\Delta}^{(m)} \omega_{\Delta}^{(k-m)}\right\|_{L_{1}\left[t_{0}, t_{k}\right]} \leqslant c, \quad m=1, \ldots, k,
$$

that is, for the B-spline $M_{\Delta}(x)=\left(k /\left(t_{k}-t_{0}\right)\right) N_{\Delta}(x)$ we have

$$
\left\|M_{\Delta}^{(m-1)} \omega_{\Delta}^{(k-m)}\right\|_{L_{1}\left[t_{0}, t_{k}\right]} \leqslant c .
$$

(2) Another possibility to improve the result of Theorem 1 would be to find a sharp bound for one of the related constants considered in [S]. In this respect it is known, e.g., that

$$
\begin{equation*}
\kappa_{k, \infty} \leqslant E_{k, p}^{-1} \tag{7.3}
\end{equation*}
$$

where

$$
E_{k, p}:=\inf _{\Delta} \inf _{j} \inf _{c_{i}}\left\{\left\|N_{j}-\sum_{i \neq j} c_{i} N_{i}\right\|_{p}\right\} .
$$

In particular, there is equality in (7.3) for $p=\infty$.
The hope is to prove that the knot sequence at which the value $E_{k, p}$ is attained for $p=1$ or $p=2$ is the Bernstein one, in which case the inequalities

$$
E_{k, 1}^{-1}<c 2^{k}, \quad \text { or } \quad E_{k, 2}^{-1}<c 2^{k}
$$

would follow. (It is known that the Bernstein knot sequence is not extreme for $p=\infty$, see [B3].)

REFERENCES

[B1] C. de Boor, Splines as linear combinations of B-splines, a survey, in "Approximation Theory, II" (G. G. Lorentz, C. K. Chui, and L. L. Schumaker, Eds.), pp. 1-47, Academic Press, New York, 1976.
[B2] C. de Boor, On local linear functionals which vanish at all B-splines but one, in "Theory of Approximation with Applications" (A. G. Law and B. N. Sahney, Eds.), pp. 120-145, Academic Press, New York, 1976.
[B3] C. de Boor, The exact condition of the B-spline basis may be hard to determine, J. Approx. Theory 60 (1990), 344-359.
[C] Z. Ciesielski, On the B-spline basis in the space of algebraic polynomials, Ukrainian Math. J. 38 (1986), 359-364.
[L] E. T. Y. Lee, Marsden's Identity, Comput. Aided Geom. Design 13 (1996), 287-305.
[Ly] T. Lyche, A note on the condition number of the B-spline basis, J. Approx. Theory 22 (1978), 202-205.
[S] K. Scherer, The condition number of B-splines and related constants, in "Open Problems in Approximation Theory" (B. Bojanov, Ed.), pp. 180-191, SCT Publishing, Singapore, 1994.
[SS1] K. Scherer and A. Yu. Shadrin, Some remarks on the B-spline basis condition number, unpublished manuscript.
[SS2] K. Scherer and A. Yu Shadrin, New upper bound for the B-spline basis condition number, I, East J. Approx. 2 (1996), 331-342.

[^0]: * Supported by a grant from the Alexander von Humboldt-Stiftung.

